Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 256: 121618, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663208

RESUMEN

The potential of nitrate electro-bioremediation has been fully demonstrated at the laboratory scale, although it has not yet been fully implemented due to the challenges associated with scaling-up bioelectrochemical reactors and their on-site operation. This study describes the initial start-up and subsequent stable operation of an electro-bioremediation pilot plant for the treatment of nitrate-contaminated groundwater on-site (Navata site, Spain). The pilot plant was operated under continuous flow mode for 3 months, producing an effluent suitable for drinking water in terms of nitrates and nitrites (<50 mg NO3- L-1; 0 mg NO2- L-1). A maximum nitrate removal rate of 0.9 ± 0.1 kg NO3- m-3 d-1 (efficiency 82 ± 18 %) was achieved at a cathodic hydraulic retention time (HRTcat) of 2.0 h with a competitive energy consumption of 4.3 ± 0.4 kWh kg-1 NO3-. Under these conditions, the techno-economic analysis estimated an operational cost of 0.40 € m-3. Simultaneously, microbiological analyses revealed structural heterogeneity in the reactor, with denitrification functionality concentrated predominantly from the centre to the upper section of the reactor. The most abundant groups were Pseudomonadaceae, Rhizobiaceae, Gallionellaceae, and Xanthomonadaceae. In conclusion, this pilot plant represents a significant advancement in implementing this technology on a larger scale, validating its effectiveness in terms of nitrate removal and cost-effectiveness. Moreover, the results validate the electro-bioremediation in a real environment and encourage further investigation of its potential as a water treatment.


Asunto(s)
Biodegradación Ambiental , Agua Subterránea , Nitratos , Contaminantes Químicos del Agua , Purificación del Agua , Agua Subterránea/química , Nitratos/metabolismo , Proyectos Piloto , Purificación del Agua/métodos , Desnitrificación , España , Reactores Biológicos
2.
Chemosphere ; 352: 141370, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316275

RESUMEN

Nitrate-contaminated groundwater is a pressing issue in rural areas, where up to 40 % of the population lacks access to safely managed drinking water services. The high costs and complexity of centralised treatment in these regions exacerbate this problem. To address this challenge, the present study proposes electro-bioremediation as a more accessible decentralised alternative. Specifically, the main focus of this study is developing and evaluating a compact reactor designed to accomplish simultaneous nitrate removal and groundwater disinfection. Significantly, this study has established a new benchmark for nitrate reduction rate within bioelectrochemical reactors, achieving the maximum reported rate of 5.0 ± 0.3 kg NO3- m-3NCC d-1 at an HRTcat of 0.7 h. Furthermore, thein-situ generation of free chlorine was effective for water disinfection, resulting in a residual concentration of up to 4.4 ± 1.1 mg Cl2 L-1 in the effluent at the same HRTcat of 0.7 h. These achievements enabled the treated water to meet the drinking water standards for nitrogen compounds (nitrate, nitrite, and nitrous oxide) as well as pathogens content (T. coliforms, E. coli, and Enterococcus). In conclusion, this study demonstrates the potential of the electro-bioremediation of nitrate-contaminated groundwater as a decentralised water treatment system in rural areas with a competitive operational cost of 1.05 ± 0.16 € m-3.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Nitratos/química , Biodegradación Ambiental , Escherichia coli , Desinfección , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química
3.
Biotechnol Bioeng ; 121(1): 250-265, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881108

RESUMEN

The performance of combined reduction of nitrate (NO3 - ) to dinitrogen gas (N2 ) and oxidation of arsenite (As[III]) to arsenate (As[V]) by a bioelectrochemical system was assessed, supported by ecotoxicity characterization. For the comprehensive toxicity characterization of the untreated model groundwater and the treated reactor effluents, a problem-specific ecotoxicity test battery was established. The performance of the applied technology in terms of toxicity and target pollutant elimination was compared and analyzed. The highest toxicity attenuation was achieved under continuous flow mode with hydraulic retention time (HRT) = 7.5 h, with 95%, nitrate removal rate and complete oxidation of arsenite to arsenate. Daphnia magna proved to be the most sensitive test organism. The results of the D. magna lethality test supported the choice of the ideal operational conditions based on chemical data analysis. The outcomes of the study demonstrated that the applied technology was able to improve the groundwater quality in terms of both chemical and ecotoxicological characteristics. The importance of ecotoxicity evaluation was also highlighted, given that significant target contaminant elimination did not necessarily lower the environmental impact of the initial, untreated medium, in addition, anomalies might occur during the technology operational process which in some instances, could result in elevated toxicity levels.


Asunto(s)
Arsenitos , Agua Subterránea , Contaminantes Químicos del Agua , Arseniatos/análisis , Nitratos/toxicidad , Biodegradación Ambiental , Arsenitos/toxicidad , Arsenitos/análisis , Arsenitos/química , Agua Subterránea/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
4.
Sci Rep ; 13(1): 20073, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973932

RESUMEN

Co-cultures of clostridia with distinct physiological properties have emerged as an alternative to increase the production of butanol and other added-value compounds from biomass. The optimal performance of mixed tandem cultures may depend on the stability and fitness of each species in the consortium, making the development of specific quantification methods to separate their members crucial. In this study, we developed and tested a multiplex qPCR method targeting the 16S rRNA gene for the simultaneous quantification of Clostridium acetobutylicum, Clostridium carboxidivorans and Clostridium cellulovorans in co-cultures. Designed primer pairs and probes could specifically quantify the three Clostridium species with no cross-reactions thus allowing significant changes in their growth kinetics in the consortia to be detected and correlated with productivity. The method was used to test a suitable medium composition for simultaneous growth of the three species. We show that higher alcohol productions were obtained when combining C. carboxidivorans and C. acetobutylicum compared to individual cultures, and further improved (> 90%) in the triplet consortium. Altogether, the methodology could be applied to fermentation processes targeting butanol productions from lignocellulosic feedstocks with a higher substrate conversion efficiency.


Asunto(s)
Clostridium acetobutylicum , Clostridium cellulovorans , Clostridium acetobutylicum/genética , Clostridium cellulovorans/genética , Reacción en Cadena de la Polimerasa Multiplex , ARN Ribosómico 16S/genética , Clostridium/genética , Butanoles , 1-Butanol , Fermentación
5.
Sci Total Environ ; 886: 163965, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37156389

RESUMEN

This study delves into the microbial community complexity and its role in self-forming dynamic membrane (SFDM) systems, designed to remove nutrients and pollutants from wastewater, by means of the analysis of Next-Generation Sequencing (NGS) data. In these systems, microorganisms are naturally incorporated into the SFDM layer, which acts as a biological and physical filter. The microorganisms present in an innovative and highly efficient aerobic, electrochemically enhanced, encapsulated SFDM bioreactor were studied to elucidate the nature of the dominant microbial communities present in sludge and in encapsulated SFDM, patented as living membrane® (LM) of the experimental setup. The results were compared to those obtained from the microbial communities found in similar experimental reactors without an applied electric field. The data gathered from the NGS microbiome profiling showed that the microbial consortia found in the experimental systems are comprised of archaeal, bacterial, and fungal communities. However, the distribution of the microbial communities found in e-LMBR and LMBR had significant differences. The results showed that the presence of an intermittently applied electric field in e-LMBR promotes the growth of some types of microorganisms (mainly electroactive microorganisms) responsible for the highly efficient treatment of the wastewater and for the mitigation of the membrane fouling found for those bioreactors.


Asunto(s)
Microbiota , Purificación del Agua , Aguas Residuales , Aguas del Alcantarillado/microbiología , Reactores Biológicos/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Membranas Artificiales
6.
Environ Sci Ecotechnol ; 16: 100261, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37089695

RESUMEN

The industrial adoption of microbial electrosynthesis (MES) is hindered by high overpotentials deriving from low electrolyte conductivity and inefficient cell designs. In this study, a mixed microbial consortium originating from an anaerobic digester operated under saline conditions (∼13 g L-1 NaCl) was adapted for acetate production from bicarbonate in galvanostatic (0.25 mA cm-2) H-type cells at 5, 10, 15, or 20 g L-1 NaCl concentration. The acetogenic communities were successfully enriched only at 5 and 10 g L-1 NaCl, revealing an inhibitory threshold of about 6 g L-1 Na+. The enriched planktonic communities were then used as inoculum for 3D printed, three-chamber cells equipped with a gas diffusion biocathode. The cells were fed with CO2 gas and operated galvanostatically (0.25 or 1.00 mA cm-2). The highest production rate of 55.4 g m-2 d-1 (0.89 g L-1 d-1), with 82.4% Coulombic efficiency, was obtained at 5 g L-1 NaCl concentration and 1 mA cm-2 applied current, achieving an average acetate production of 44.7 kg MWh-1. Scanning electron microscopy and 16S rRNA sequencing analysis confirmed the formation of a cathodic biofilm dominated by Acetobacterium sp. Finally, three 3D printed cells were hydraulically connected in series to simulate an MES stack, achieving three-fold production rates than with the single cell at 0.25 mA cm-2. This confirms that three-chamber MES cells are an efficient and scalable technology for CO2 bio-electro recycling to acetate and that moderate saline conditions (5 g L-1 NaCl) can help reduce their power demand while preserving the activity of acetogens.

7.
Environ Sci Ecotechnol ; 15: 100253, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36896143

RESUMEN

It has been recently suggested that Alcaligenes use a previously unknown pathway to convert ammonium into dinitrogen gas (Dirammox) via hydroxylamine (NH2OH). This fact alone already implies a significant decrease in the aeration requirements for the process, but the process would still be dependent on external aeration. This work studied the potential use of a polarised electrode as an electron acceptor for ammonium oxidation using the recently described Alcaligenes strain HO-1 as a model heterotrophic nitrifier. Results indicated that Alcaligenes strain HO-1 requires aeration for metabolism, a requirement that cannot be replaced for a polarised electrode alone. However, concomitant elimination of succinate and ammonium was observed when operating a previously grown Alcaligenes strain HO-1 culture in the presence of a polarised electrode and without aeration. The usage of a polarised electrode together with aeration did not increase the succinate nor the nitrogen removal rates observed with aeration alone. However, current density generation was observed along a feeding batch test representing an electron share of 3% of the ammonium removed in the presence of aeration and 16% without aeration. Additional tests suggested that hydroxylamine oxidation to dinitrogen gas could have a relevant role in the electron discharge onto the anode. Therefore, the presence of a polarised electrode supported the metabolic functions of Alcaligenes strain HO-1 on the simultaneous oxidation of succinate and ammonium.

8.
Chemosphere ; 317: 137850, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36657572

RESUMEN

Relevant challenges associated with the urban water cycle must be overcome to meet the United Nations Sustainable Development Goals (SDGs) and improve resilience. Unlike previous studies that focused only on the provision of drinking water, we propose a framework that extends the use of the theory of nudges to all stages of the overall urban water cycle (drinking water and wastewater services), and to agents of influence (citizens, organizations, and governments) at different levels of decision making. The framework integrates four main drivers (the fourth water revolution, digitalization, decentralization, and climate change), which influence how customers, water utilities and regulators approach the challenges posed by the urban water cycle. The proposed framework, based on the theory of nudges first advanced by the Nobel Prize in behavioral economics Richard H. Thaler and Cass R. Sunstein (Thaler and Sunstein, 2009), serves as a reference for policymakers to define medium- and long-term strategies and policies for improving the sustainability and resilience of the urban water cycle. Finally, we provide new insights for further research on resilience approaches to the management of the urban water cycle as an element to support the more efficient formulation of policies.


Asunto(s)
Agua Potable , Ciclo Hidrológico , Desarrollo Sostenible
10.
Bioresour Technol ; 365: 128161, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36272679

RESUMEN

Human activities release more carbon dioxide (CO2) into the atmosphere than the natural process can remove. This study attempts to address the main challenges for the thermophilic (50 °C) bioelectrochemical conversion of CO2 into acetate. First, real gaseous emissions were tested with mixed microbial consortia, which had no substantial influence on production rates (difference of 2.5%). Subsequently, a bench-scale system (TRL 4-5) was designed and launched to control key operational variables. Fixing the current at 1.3 A m-2, CO2 was reduced at a rate of 2.21 kg CO2 kg-1 acetate, while the electricity consumption was 2.07 kWh kg-1, the most efficient value so far. The results suggest that the operation with real effluents is feasible and the proposed design is energy efficient, but the right balance between maximising current densities without compromising the biocompatibility with catalysts will determine the transition from laboratory scale towards its implementation in the market.


Asunto(s)
Dióxido de Carbono , Gases , Humanos , Electricidad , Acetatos , Emisiones de Vehículos
11.
Sci Total Environ ; 845: 157236, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35810909

RESUMEN

Bioelectrochemical systems (BES) have proven their capability to treat nitrate-contaminated saline groundwater and simultaneously recover value-added chemicals (such as disinfection products) within a circular economy-based approach. In this study, the effect of the hydraulic retention time (HRT) on nitrate and salinity removal, as well as on free chlorine production, was investigated in a 3-compartment BES working in galvanostatic mode with the perspective of process intensification and future scale-up. Reducing the HRT from 30.1 ± 2.3 to 2.4 ± 0.2 h led to a corresponding increase in nitrate removal rates (from 17 ± 1 up to 131 ± 1 mgNO3--N L-1d-1), although a progressive decrease in desalination efficiency (from 77 ± 13 to 12 ± 2 %) was observed. Nitrate concentration and salinity close to threshold limits indicated by the World Health Organization for drinking water, as well as significant chlorine production were achieved with an HRT of 4.9 ± 0.4 h. At such HRT, specific energy consumption was low (6.8·10-2 ± 0.3·10-2 kWh g-1NO3--Nremoved), considering that the supplied energy supports three processes simultaneously. A logarithmic equation correlated well with nitrate removal rates at the applied HRTs and may be used to predict BES behaviour with different HRTs. The bacterial community of the bio-cathode under galvanostatic mode was dominated by a few populations, including the genera Rhizobium, Bosea, Fontibacter and Gordonia. The results provide useful information for the scale-up of BES treating multi-contaminated groundwater.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Reactores Biológicos/microbiología , Cloro , Desnitrificación , Agua Subterránea/microbiología , Nitratos/análisis , Óxidos de Nitrógeno , Contaminantes Químicos del Agua/análisis
12.
Front Microbiol ; 13: 869474, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711746

RESUMEN

Electrified biotrickling filters represent sustainable microbial electrochemical technology for treating organic carbon-deficient ammonium-contaminated waters. However, information on the microbiome of the conductive granule bed cathode remains inexistent. For uncovering this black box and for identifying key process parameters, minimally invasive sampling units were introduced, allowing for the extraction of granules from different reactor layers during reactor operation. Sampled granules were analyzed using cyclic voltammetry and molecular biological tools. Two main redox sites [-288 ± 18 mV and -206 ± 21 mV vs. standard hydrogen electrode (SHE)] related to bioelectrochemical denitrification were identified, exhibiting high activity in a broad pH range (pH 6-10). A genome-centric analysis revealed a complex nitrogen food web and the presence of typical denitrifiers like Pseudomonas nitroreducens and Paracoccus versutus with none of these species being identified as electroactive microorganism so far. These are the first results to provide insights into microbial structure-function relationships within electrified biotrickling filters and underline the robustness and application potential of bioelectrochemical denitrification for environmental remediation.

13.
Bioresour Technol ; 354: 127181, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35447329

RESUMEN

Anaerobic gas fermentation is a promising approach to transform carbon dioxide (CO2) into chemical building blocks. However, the main operational conditions to enhance the process and its selectivity are still unknown. The main objective of this study was to trigger chain elongation from a joint perspective of thermodynamic and experimental assessment. Thermodynamics revealed that acetic acid formation was the most spontaneous reaction, followed by n-caproic and n-butyric acids, while the doorway for alcohols production was bounded by the selected conditions. Best parameters combinations were applied in three 0.12 L fermenters. Experimentally, n-caproic acid formation was boosted at pH 7, 37 °C, Acetate:Ethanol mass ratio of 1:3 and low H2 partial pressure. Though these conditions did not match with those required to produce their main substrates, the unification of both perspectives yielded the highest n-caproic acid concentration (>11 g L-1) so far from simple substrates, accounting for 77 % of the total products.


Asunto(s)
Reactores Biológicos , Dióxido de Carbono , Etanol , Fermentación , Termodinámica
14.
Biotechnol Adv ; 59: 107950, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35364226

RESUMEN

The market of biobased products obtainable via fermentation processes has steadily increased over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC), whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is still hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a means to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying EF are still largely unknown. This review provides a comprehensive overview of recent literature studies including both AEF and CEF examples using pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.


Asunto(s)
Electricidad , Electrodos , Fermentación
15.
Bioresour Technol ; 348: 126788, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35104648

RESUMEN

Cathodic biofilms have an important role in CO2 bio-reduction to carboxylic acids and biofuels in microbial electrosynthesis (MES) cells. However, robust and resilient electroactive biofilms for an efficient CO2 conversion are difficult to achieve. In this review, the fundamentals of cathodic biofilm formation, including energy conservation, electron transfer and development of catalytic biofilms, are presented. In addition, strategies for improving cathodic biofilm formation, such as the selection of electrode and carrier materials, cell design and operational conditions, are described. The knowledge gaps are individuated, and possible solutions are proposed to achieve stable and productive biofilms in MES cathodes.


Asunto(s)
Fuentes de Energía Bioeléctrica , Dióxido de Carbono , Biopelículas , Biocombustibles , Electrodos , Transporte de Electrón
16.
Bioresour Technol ; 347: 126705, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35065228

RESUMEN

Electroactive microorganisms can exchange electrons with other cells or conductive interfaces in their extracellular environment. This property opens the way to a broad range of practical biotechnological applications, from manufacturing sustainable chemicals via electrosynthesis, to bioenergy, bioelectronics or improved, low-energy demanding wastewater treatments. Besides, electroactive microorganisms play key roles in environmental bioremediation, significantly impacting process efficiencies. This review highlights our present knowledge on microbial interactions promoting the communication between electroactive microorganisms in a biofilm on an electrode in bioelectrochemical systems (BES). Furthermore, the immediate knowledge gaps that must be closed to develop novel technologies will also be acknowledged.


Asunto(s)
Fuentes de Energía Bioeléctrica , Biopelículas , Comunicación , Electrodos , Electrones
17.
Sci Total Environ ; 806(Pt 1): 150433, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34560446

RESUMEN

Electro bioremediation is gaining interest as a sustainable treatment for contaminated groundwater. Nevertheless, the investigation is still at the laboratory level, and before their implementation is necessary to overcome important drawbacks. A prevalent issue is the high groundwater hardness that generates scale deposition on electrodes that irreversibly affects the treatment effectiveness and their lifetime. For this reason, the present study evaluated a novel and sustainable approach combining electrochemical water softening as a preliminary step for electro bioremediation of nitrate-contaminated groundwater. Batch mode tests were performed at mL-scale to determine the optimum reactor configuration (single- or two-chambers) and the suitable applied cathode potential for electrochemical softening. A single-chamber reactor working at a cathode potential of -1.2 V vs. Ag/AgCl was chosen. Continuous groundwater softening under this configuration achieved a hardness removal efficiency of 64 ± 4% at a rate of 305 ± 17 mg CaCO3 m-2cathode h-1. The saturation index at the effluent of the main minerals susceptible to precipitate (aragonite, calcite, and brucite) was reduced up to 90%. Softening activity plummeted after 13 days of operation due to precipitate deposition (mostly calcite) on the cathode surface. Polarity reversal periods were considered to detach the precipitated throughout the continuous operation. Their implementation every 3-4 days increased the softening lifetime by 48%, keeping a stable hardness removal efficiency. The nitrate content of softened groundwater was removed in an electro bioremediation system at a rate of 1269 ± 30 g NO3- m-3NCC d-1 (97% nitrate removal efficiency). The energy consumption of the integrated system (1.4 kWh m-3treated) confirmed the competitiveness of the combined treatment and paves the ground for scaling up the process.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Nitratos/análisis , Contaminantes Químicos del Agua/análisis , Ablandamiento del Agua
18.
Water Res ; 206: 117736, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34656821

RESUMEN

Groundwater pollution and salinization have increased steadily over the years. As the balance between water demand and availability has reached a critical level in many world regions, a sustainable approach for the management (including recovery) of saline water resources has become essential. A 3-compartment cell configuration was tested for a new application based on the simultaneous denitrification and desalination of nitrate-contaminated saline groundwater and the recovery of value-added chemicals. The cells were initially operated in potentiostatic mode to promote autotrophic denitrification at the bio-cathode, and then switched to galvanostatic mode to improve the desalination of groundwater in the central compartment. The average nitrate removal rate achieved was 39±1 mgNO3--N L-1 d-1, and no intermediates (i.e., nitrite and nitrous oxide) were observed in the effluent. Groundwater salinity was considerably reduced (average chloride removal was 63±5%). Within a circular economy approach, part of the removed chloride was recovered in the anodic compartment and converted into chlorine, which reached a concentration of 26.8±3.4 mgCl2 L-1. The accumulated chlorine represents a value-added product, which could also be dosed for disinfection in water treatment plants. With this cell configuration, WHO and European legislation threshold limits for nitrate (11.3 mgNO3--N L-1) and salinity (2.5 mS cm-1) in drinking water were met, with low specific power consumptions (0.13±0.01 kWh g-1NO3--Nremoved). These results are promising and pave the ground for successfully developing a sustainable technology to tackle an urgent environmental issue.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Biodegradación Ambiental , Cloruros , Cloro , Desnitrificación , Nitratos/análisis , Contaminantes Químicos del Agua/análisis
20.
Sci Total Environ ; 792: 148479, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34465066

RESUMEN

This review paper aims to identify the main sources of carbon dioxide (CO2) emissions from wastewater treatment plants (WWTPs) and highlights the technologies developed for CO2 capture in this milieu. CO2 is emitted in all the operational units of conventional WWTPs and even after the disposal of treated effluents and sludges. CO2 emissions from wastewater can be captured or mitigated by several technologies such as the production of biochar from sludge, the application of constructed wetlands (CWs), the treatment of wastewater in microbial electrochemical processes (microbial electrosynthesis, MES; microbial electrolytic carbon capture, MECC; in microbial carbon capture, MCC), and via microalgal cultivation. Sludge-to-biochar and CW systems showed a high cost-effectiveness in the capture of CO2, while MES, MECC, MCC technologies, and microalgal cultivation offered efficient capture of CO2 with associate production of value-added by-products. At the state-of-the-art, these technologies, utilized for carbon capture and utilization from wastewater, require more research for further configuration, development and cost-effectiveness. Moreover, the integration of these technologies has a potential internal rate of return (IRR) that could equate the operation or provide additional revenue to wastewater management. In the context of circular economy, these carbon capture technologies will pave the way for new sustainable concepts of WWTPs, as an essential element for the mitigation of climate change fostering the transition to a decarbonised economy.


Asunto(s)
Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Electrólisis , Gases de Efecto Invernadero/análisis , Aguas Residuales , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...